Progression as an endpoint in CRC

Kevin Carroll, BSc, MSc, FRSS, Global Statistical Leader, Oncology, AstraZeneca Pharmaceuticals

Progression is a meaningful endpoint in CRC trials

- AstraZeneca's phase III trial program data provide evidence to support PFS as a surrogate for survival in 1st line CRC.
- Recent literature is supportive, with improvements in PFS generally followed by improvements in survival.
- An 'event count' analysis provides a simple alternative to the analysis of PFS time and avoids concerns with respect to the determination of the time of progression.
- Progression is a meaningful endpoint in 1st line CRC^{1,2}, improvements in which represent a patient benefit and, as such, should be employed as the primary endpoint in clinical trials.

Tomudex vs. 5FU-LV in 1st line CRC

- 3, multicenter, international randomized phase III trials in 1361 patients.
- Trials of similar design, similar incl./excl. criteria and commonly defined endpoints.
- One trial (0010¹) conducted in North America, two trials (0003² and 0012³) predominantly in Europe and Australia.

PFS and survival outcomes in the Tomudex trials

	Progression-Free Survival		Overall Survival	
Trial	Tomudex Events (%)	5FU-LV Events (%)	Tomudex Events (%)	5FU-LV Events (%)
0003 (N=439)	223 (94.6)	216 (94.4)	165 (74.0)	152 (70.4)
0010 (N=427)	205 (94.5)	192 (91.4)	163 (75.1)	136 (64.8)
0012 (N=495)	205 (84.6)	195 (78.6)	123 (49.8)	119 (48.0)
All (N=1361)	625 (91.0)	591 (87.7)	451 (65.7)	407 (60.4)
	HR* & 95% CI 1.30 (1.16, 1.46)		HR* & 95% CI 1.17 (1.03, 1.34)	

^{*}HR=Hazard ratio from an unadjusted log rank test

Evidence PFS is a surrogate for survival in the Tomudex program

- 53% of the treatment effect on survival is explained by the effect of treatment on $PFS^{1,2}$.
 - Survival is not significant after adjustment for PFS; HR = 1.08 (0.94, 1.23), p=0.27.
- The relative effect³ of treatment on survival vs. PFS is estimated to be 0.51 (0.11, 0.91).
 - If PFS increases by 50%, expect survival to increase by 29% 95% CI (13%, 48%).

Positive association between treatment effects on survival and PFS in 1^{st} line Tomudex CRC trials

r=0.48, p=0.0247

Log HR for PFS

Size of circle proportional to N pts in region/trial.

PFS and survival data from recently completed trials in 1st line CRC

Comparison	Reference	Total No. of patients	Effect [†] on PFS	Effect [†] on survival
IFL v FL	Saltz ¹	457	+56%*	+28%*
IFL v FL	Douillard ²	385	+69%*	+23%*#
Oxali +FL v FL	DeGramont ³	420	+72%*	+25%*
Oxali +FL v FL	Giacchetti ⁴	200	+43%*#	-3% ^{NS#}
Bevac +IFL v IFL	Hurwitz ⁵	815	+85%*	+54%*
Oxali +FL vs. IFL	Goldberg ⁶	531	+35%*	+52%*
Oxali +FL vs. IrOx	Goldberg ⁶	528	+39%*	+20% ^{NS}

^{*2}p<0.05. #ratio of medians. Tinverse hazard ratio.

Actual PFS time is often unknown in clinical trials^{1,2}

Survival Time

★ = Date of Death or actual tumor progression

¹ Slide adapted from Dr G Williams, web link; ² Williams et al, Proc ASCO, 2002.

Using overall 'event count' to compare treatments for progression outcome 1,2,3

- As an alternative to PFS time, treatments could be compared on the overall event count over the trial follow-up period
 - free from concerns and potential biases associated with the timing of the event.
 - can derive the relative risk (RR) of progression between treatments.
 - Little loss in statistical power under most circumstances providing fewer than 75-80% of patients have progressed.
 - Is more powerful if treatment effect is delayed.

Overall event count analysis provides similar results compared to conventional PFS time, log rank analyses

Summary

- AstraZeneca's phase III trial program data provide evidence to support PFS as a surrogate for survival in 1st line CRC.
- Recent literature is supportive, with improvements in PFS generally followed by improvements in survival.
- An 'event count' analysis provides a simple alternative to the analysis of PFS time and avoids concerns with respect to the determination of the time of progression.
- Progression is a meaningful endpoint in 1st line CRC^{1,2}, improvements in which represent a patient benefit and, as such, should be employed as the primary endpoint in clinical trials.