PARAMETRIC APPROACHES TO THE ANALYSIS OF TIME TO EVENT DATA: WHY NOT?

ACCELERATED FAILURE TIME AND THE WEIBULL

- AFT analysis represents a powerful and versatile alternative to traditional Cox PH approach
- Let *T* represent log failure time, then an AFT model is simply $t = \mu + \beta' \underline{x} + \epsilon$
- Examples include Exponential, Log Normal and Weibull
- Weibull is the only AFT member that is simultaneously proportional:

$$\circ f(t) = \alpha \lambda t^{\alpha - 1} e^{-\lambda t^{\alpha}} \text{ with } t > 0, \, \alpha > 0, \, \lambda > 0$$

$$\circ S(t) = e^{-\lambda t^{\alpha}}, \, h(t) = \alpha \lambda t^{\alpha - 1}$$

$$\circ HR(t) = \frac{\alpha_E \lambda_E}{\alpha_C \lambda_C} t^{\alpha_E - \alpha_C} \text{ so that } HR(t) = \frac{\lambda_E}{\lambda_C} \text{ if } \alpha_E = \alpha_C$$

WEIBULL SURVIVOR FUNCTION

WEIBULL HAZARD FUNCTION

Time

Some Properties and Features of the Weibull

• AFTs easily fit in SAS via PROC LIFEREG

• Supports regular time to event and interval censored analysis

$$\circ \alpha = 1/\sigma \text{ and } \log(\lambda) = -\left(\mu + \underline{\beta' x}\right)/\sigma$$

$$\circ \text{ If } x = 0, 1 \text{ denotes control and experimental, } \log(HR) = -\beta/\sigma \text{ with }$$

$$\text{ variance } \widehat{var}[\log(\widehat{HR})] = (\widehat{\beta}/\widehat{\sigma})^2 \left(\widehat{\beta}^{-2}\widehat{var}(\widehat{\beta}) + \widehat{\sigma}^{-2}\widehat{var}(\widehat{\sigma}) - 2\widehat{\beta}^{-1}\widehat{\sigma}^{-1}\widehat{cov}(\widehat{\beta},\widehat{\sigma})\right)$$

• Event Time Ratio

• Percentile: $t_p = \{\lambda^{-1}log(p^{-1})\}^{\alpha^{-1}}$

$$\circ t_{Ep}/t_{Cp} = HR^{-\alpha^{-1}}$$

• Allows quantification of treatment effect in terms of added time

Some Properties and Features of the Weibull

• Estimated survivor function $\widehat{S}(t) = e^{-\widehat{\lambda}t^{\widehat{\alpha}}}$

$$\circ \hat{var} \left[log \left(-log \hat{S}(t) \right) \right] = \frac{1}{\hat{\sigma}^2} \left(\hat{var}(\hat{\mu}) + \hat{var} \left(\underline{\hat{\beta}'} \right) \right) + \left\{ \frac{\left(\hat{\mu} + \underline{\hat{\beta}'} \underline{x} - \log(t) \right)}{\hat{\sigma}^2} \right\}^2 \hat{var}(\hat{\sigma}) \\ + \frac{2}{\hat{\sigma}^2} cov \left(\hat{\mu}, \underline{\hat{\beta}'} \right) - \frac{2}{\hat{\sigma}^3} \left(\hat{\mu} + \underline{\hat{\beta}'} \underline{x} - \log(t) \right) \left(cov(\hat{\mu}, \hat{\sigma}) + cov \left(\underline{\hat{\beta}'}, \hat{\sigma} \right) \right)$$

• Allows CI envelope for $\hat{S}(t)$ to be estimated

• Direct test of proportionality

$$\circ \frac{\{\log(\widehat{\alpha}_E/\widehat{\alpha}_C)\}^2}{\widehat{\alpha}_E^{-2}Var(\widehat{\alpha}_E) + \widehat{\alpha}_C^{-2}Var(\widehat{\alpha}_C)} \sim \chi_1^2$$

- Asymptotically equally efficient to Cox regression
 - $\circ \hat{var}[\log(\hat{HR}_{Cox})] \cong 1/d_E + 1/d_C$ (Sellke and Siegmund 1983)

 $\circ \, \hat{var} \left[\log(\widehat{HR}_{AFT}) \right] \cong \, 1/d_E + 1/d_C \quad \text{(Carroll 2003)}$

Some Properties and Features of the Weibull

• Average event rate over (0,T]

• Integrated hazard over $(0,T] = \lambda T^{\alpha}$ so the average hazard, $H_{\lambda} = \lambda T^{\alpha-1}$

 $\circ \hat{var}[log(\lambda T^{\alpha-1})]$ easily attained via delta method as for $\hat{var}[log(-log\hat{S}(t))]$

 $\circ H_E/H_C$ = ratio of average hazards over (0,T] even if data non-proportional

• Predicting data maturation

- Assume an analysis has been performed with a mean follow-up time F, at which time d patients have died and c = n d are censored.
- Consider the individual *i* with covariates \underline{x}_i , censored at time *F*. The probability that this individual survives to time F + S is $e^{-\lambda_i \{(F+S)^{\alpha} + F^{\alpha}\}}$ so that $F + S = (-\lambda_i^{-1} \ln(u) + F^{\alpha})^{-\alpha}$ where $u \sim U(0,1)$

SOME PROPERTIES AND FEATURES OF THE WEIBULL

• Predicting data maturation (contd.)

• Survival times for the *c* censored individuals can be predicted if *c* deviates are randomly sampled from a U(0,1) distribution, and substituted into $\left(-\lambda_i^{-1}\ln(u) + F^{\alpha}\right)^{-\alpha}.$

- If, for the i^{th} patient, predicted survival exceeds F + S, then the patient remains censored; otherwise the patient is predicted to have died in the interval (F, F + S].
- Repeating this process and averaging over repeats provides an estimate of the number of additional deaths expected in the interval (F, F + S].

Some Properties and Features of the Weibull

• Impact of departures from the Weibull

• Simulation studies show similar results via Cox and Weibull modelling irrespective of true underlying distribution of the time to event (Carroll 2003)

Some Properties and Features of the Weibull

• Impact of departures from the Weibull

			Cox analysis			Weibull analysis					
λ_I^a	$\mu_A/\mu_B^{\ b}$	$\tilde{\mu}_A/\tilde{\mu}_B^c$	HR ^d	SE ^e ln HR	t	HR	SE 1n HR	t	ETR ^f	SE In ETR	t
0.01	1.25	1.13	0.834	0.1199	-1.51	0.826	0.1185	-1.62	1.099	0.0585	1.62
0.01	1.50	1.26	0.716	0.1270	-2.64	0.702	0.1251	-2.83	1.191	0.0612	2.86
0.10	1.25	1.10	0.872	0.1142	-1.19	0.874	0.1073	-1.25	1.115	0.0868	1.25
0.10	1.50	1.21	0.783	0.1195	-2.05	0.784	0.1123	-2.16	1.221	0.0920	2.17
1	1.25	1.00	0.995	0.1096	-0.05	0.982	0.1341	-0.33	1.033	0.1568	0.14
1	1.50	1.00	0.987	0.1127	-0.12	0.967	0.1407	-0.25	1.043	0.1658	0.25

Table 4. Simulation of piecewise exponential: analysis by Cox and by Weibull

^a Common event rate over first 3 months.

^b Ratio of mean times to event; $\mu_A = 6$ months throughout.

^c Ratio of median times to event.

^d Hazard ratio.

^e Standard error.

^f Event time ratio.

Cox			Weibull					
HR	SE ^a	95% CI ^b	HR	SE	95% CI	ETR	SE	95% CI
0.574	0.0947	0.477, 0.692	0.575	0.0947	0.477, 0.693	1.495	0.0706	1.302, 1.717
^b Co	onfidence in	Ad foll	ldition <u>low-up</u> 1 year 2 years	al <u>):</u> S	Expected maturity: 21% 28%			
			3 years	5	35%			

Table 3. Estimated hazard (HR) and event time ratios (ETR) for active relative to placebo

Table 3. Estimated hazard (HR) and event time ratios (ETR) for active relative to placebo

Cox			Weibul	1				
HR	SE ^a	95% CI ^b	HR	SE	95% CI	ETR	SE	95% CI
0.574	0.0947	0.477, 0.692	0.575	0.0947	0.477, 0.693	1.495	0.0706	1.302, 1.717
[₽] Co	onfidence in	iterval.	ddition	al o.	Expected			
		S	1 year		21%	i C		
			2 year 3 year	S S	28% 35%			

Table 3. Estimated hazard (HR) and event time ratios (ETR) for active relative to placebo

Cox			Weibul	1					
HR	SE ^a	95% CI ^b	HR	SE	95% CI		ETR	SE	95% CI
0.574	0.0947	0.477, 0.692	0.575	0.0947	0.477, 0.693		1.495	0.0706	1.302, 1.717
^b Co	onfidence in	terval. A <u>fo</u>	dditior <u>llow-u</u> 1 year 2 year	nal <u>p:</u> s	Expected maturity 21% 28%	1			
			3 year	°S	35%				

- PLATO trial: ticagrelor vs clopidogrel in acute coronary syndromes
- 18,642 patients
- Primary endpoint time to first of non-fatal stroke, non-fatal myocardial infarction or CV death
- Highly significant interaction between treatment effect (HR) and aspirin dose (p<0.00001)
- Aim : to describe and characterise the relationship between the HR and aspirin dose

• Determination of sample size

 \circ *d* events required for $1 - \beta$ power, 1-sided α level

• $n = d\tilde{\pi}^{-1}$ where $\tilde{\pi} = 2/(\pi_E^{-1} + \pi_C^{-1})$ is the average probability of an event over the trial follow-up period R + F.

• If patient entry times *r*, over accrual period of length *R* has pdf *f*(*r*) then $\pi = \int_{r=0}^{R} \int_{t=r}^{R+F} f(t|r)f(r)dtdr = 1 - E_r \left[e^{-\lambda(R+F-r)^{\alpha}}\right] \approx 1 - e^{-\lambda(R+F-E[r])^{\alpha}}$

• If
$$r \sim U(0, R)$$
, $\pi \approx 1 - e^{-\lambda(R+F-R/2)^{\alpha}}$

- \circ E.g. 508 events to test hypothesis true HR is 0.75.
- \circ R=12, F=6, $\alpha = 0.33$, $\lambda_C = 0.385$ then $\pi_C = 0.586$ and $\pi_E = 0.551$ so that $\tilde{\pi} = 0.568$, hence n = 508/0.568 = 895

• Expected duration of response

Time since response (days)

• Expected duration of response

Table 3

Gefitinib vs. placebo, INTACT 2. Comparison of treatments for Expected Duration of Response using exponential, Weibull and log Normal densities

	Exponential		Weibull		Log Normal		
	Gefitinib N=347	Placebo N=345	Gefitinib N=347	Placebo N=345	Gefitinib N=347	Placebo N=345	
Response rate, % [1]	30.6%	29.9%	30.6%	29.9%	30.6%	29.9%	
Mean DoR ^a [2]	221.6	148.8	173.7	134.7	202.6	139.5	
SE ^b DoR	0.137	0.115	0.083	0.057	0.131	0.074	
$EDoR^{c}[1]x[2]$	67.7	44.4	53.1	40.2	61.9	41.7	
Ratio of EDoR and 95% Cld	1.524		1.320		1.486		
	(1.003 to 2.313)		(0.977 to 1.783)		(1.025 to 2.155)		
	P=0.048		P=0.07		P=0.04		

^aDoR = Duration of response in responding patients, days.

^bSE = standard error.

^cEDoR = Expected duration of response, days.

^dCI = Confidence interval.