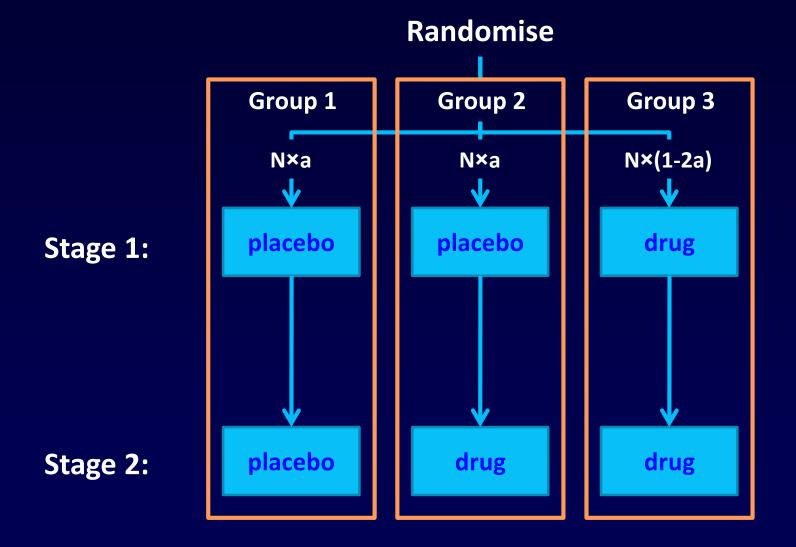


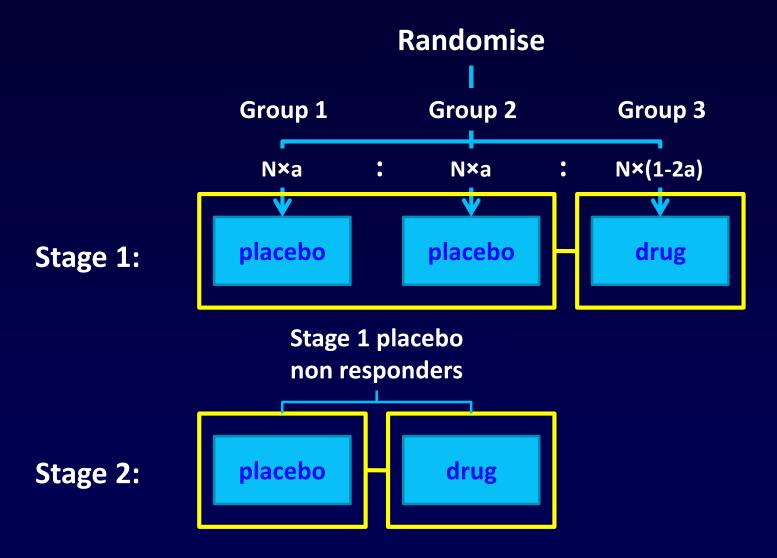
Sequential Parallel Comparison Design (SPCD):

Review of a Novel Trial Design

Kevin J Carroll


Source material

- Fava M et al. The Problem of the Placebo Response in Clinical Trials for Psychiatric Disorders: Culprits, Possible Remedies, and a Novel Study Design Approach. *Psychotherapy Psychosomastics*. 2003; 72:115-27.
- Tamura R and Huang X. An examination of the efficiency of the sequential parallel design in psychiatric clinical trials" *Clinical Trials*. 2007; 4:309-317
- Huang X and Tamura R. Comparison of Test Statistics for the Sequential Parallel Design. *Statistics in Biopharmaceutical Research*. 2010; Vol.2, No. 1:42-50.
- www.rctlogic.com



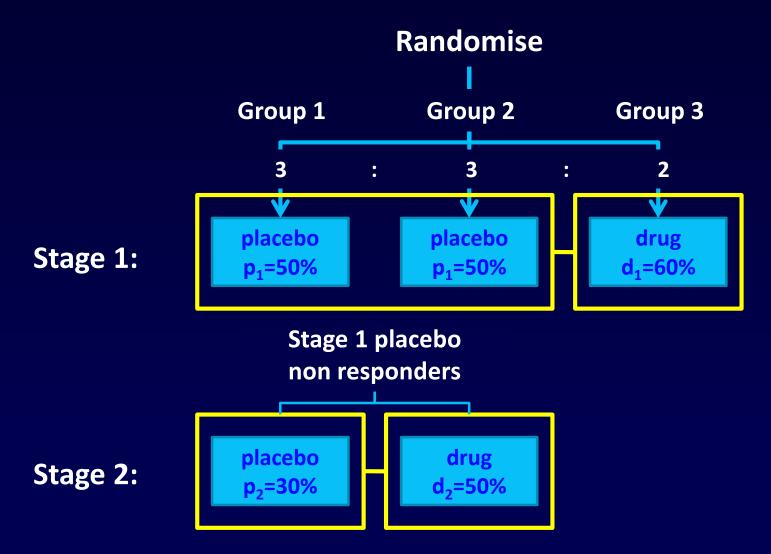
SPCD design

Comparisons

Comparisons and Treatment Effects

Stage 1

- Drug vs combined placebo
 - All randomised patients contribute
 - Treatment effect = d₁-p₁
- Stage 2
 - Drug vs placebo in Stage 1 placebo non-responders
 - Data in placebo non-responders do not contribute in Stage 2
 - Data in patients receiving drug in Stage 2 do not contribute
 - Treatment effect = d₂-p₂



Some issues

- Overall comparison based on weighted average of treatment effects in Stage 1 and Stage 2
 -w × (d₁-p₁) + (1-w) × (d₂-p₂)
- Does it make sense to combine the treatment effect in allcomers in Stage 1 with the treatment effect in nonresponders in Stage 2? How is the result to be interpreted?
- And what value for 'w'?
 - $-w = \frac{1}{2} \Rightarrow$ equal weight to Stage 1 and Stage 2 data?
 - $-w = \frac{3}{4} \Rightarrow$ more weight to Stage 2 than Stage 1?

Example #1

P:P:D	W	Ν
	0.70	397
3:3:2		

P:P:D	W	Ν
3:3:2	0.70	397
	0.95	835
	0.50	327
	0.30	358

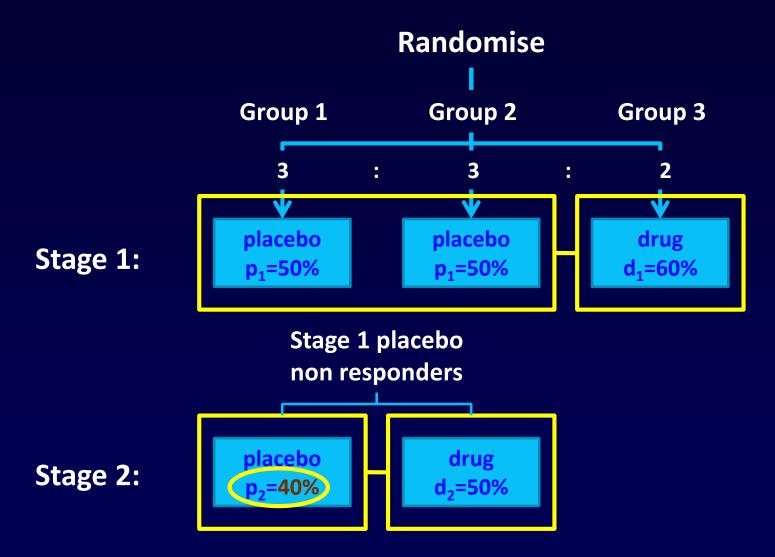
P:P:D	W	Ν
3:3:2	0.70	397
	0.95	835
	0.50	327
	0.30	358

1:1:1

1:1:2

1:1:4

P:P:D	w N	
	0.70	397
2.2.7	0.95	835
3:3:2	0.50	327
	0.30	358
	0.70	365
1:1:1	0.95	708
1:1:1	0.50	336
	0.30	394
	0.70	377
1:1:2	0.95	636
1:1:2	0.50	406
	0.30	514
	0.70	483
1:1:4	0.95	723
1.1.4	0.50	578
	0.30	762



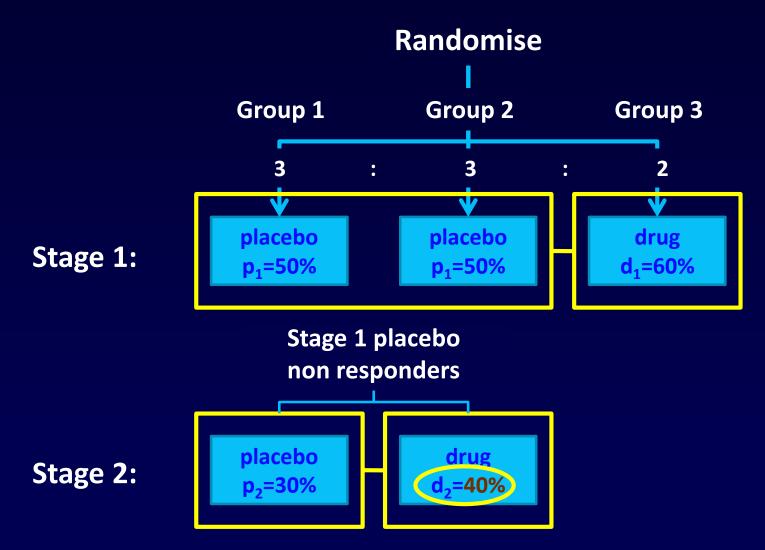
Issues

- What choice for randomisation? Design is based upon randomising more patients to placebo than drug in Stage 1.
- What choice for 'w'? How much weight to apply to Stage 1 data as compared to Stage 2?
 - Inherently not a statisitical choice must be justified and rationalised clinically.
- Fundamentally, a 60% vs 50% drug vs placebo response in Stage 1, a 50% vs 30% drug vs placebo response in placebo non-responders in Stage 2 is impossible in practice.
 - If within patient correlation is 0.33 then :
 - Stage 2: drug response = 50%, placebo response = 40%.
 - If within patient correlation is 0.60 then :
 - Stage 2: drug response = 40%, placebo response = 30%.

Example #1 revisited

When corrected, advantage of the SPCD design is largely lost

		Ν	N'
P:P:D	W	(original)	(corrected)
	0.70	397	682
3:3:2	0.95	835	921
5.5.2	0.50	327	767
	0.30	358	1096
	0.70	365	629
1:1:1	0.95	708	781
L .L.L	0.50	336	792
	0.30	394	1208
	0.70	377	654
1:1:2	0.95	636	702
1.1.2	0.50	406	961
	0.30	514	1577
1:1:4	0.70	483	842
	0.95	723	798
1.1.4	0.50	578	1372
	0.30	762	2340


Regular 1:1 design requires 770 patients

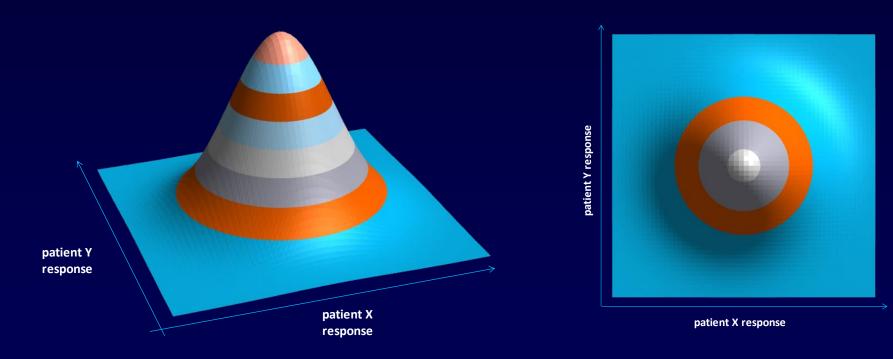
Original SPCD design = 30% vs 50% for Stage 2 placebo non responders

Corrected SPCD design = 40% vs 50% for Stage 2 placebo non responders

Example #1 revisited (again)

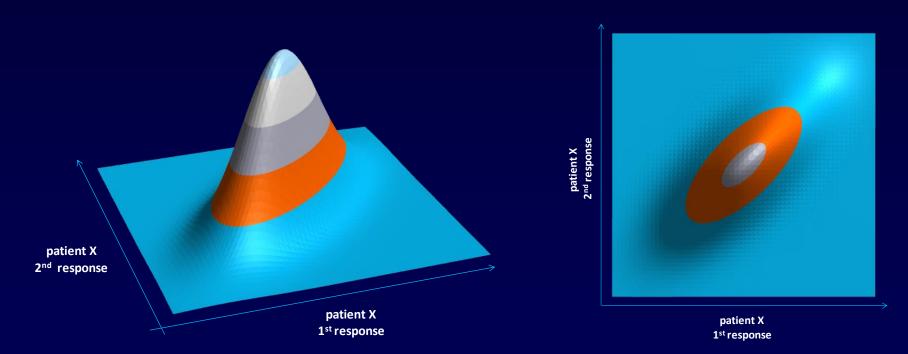
When corrected, advantage of the SPCD design is largely lost

		Ν	N'
P:P:D	W	(original)	(corrected)
	0.70	397	667
3:3:2	0.95	835	921
5.5.2	0.50	327	725
	0.30	358	1014
	0.70	365	612
1:1:1	0.95	708	781
L .L.L	0.50	336	745
	0.30	394	1116
	0.70	377	631
1:1:2	0.95	636	701
1.1.2	0.50	406	899
	0.30	514	1454
	0.70	483	808
1:1:4	0.95	723	797
1.1.4	0.50	578	1277
	0.30	762	2155


Regular 1:1 design requires 770 patients

Original SPCD design = 30% vs 50% for Stage 2 placebo non responders

Corrected SPCD design = 30% vs 40% for Stage 2 placebo non responders



Assessments from different patients are uncorrelated

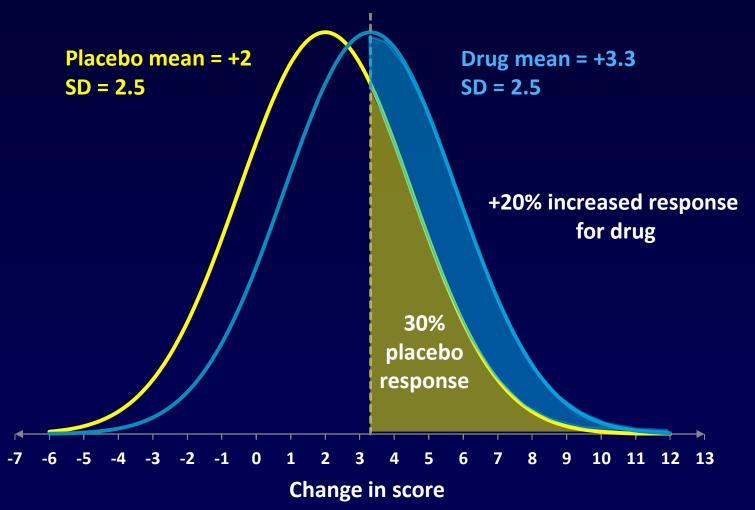
Repeat assessments within the same patient are correlated

The criticality of correlation

- SPCD design ignores this correlation many design illustrations are therefore infeasible.
- Response rate in Stage 2 is directly related to response rate in Stage 1 – cannot arbitrarily choose Stage 2 response rates when designing a trial.
 - p₂ = Pr(response to placebo in Stage 2 *given* non-response to placebo in Stage 1 = {1-p₁}).
 - d₂ = Pr(response to drug in Stage 2 given non-response to placebo in Stage 1 = {1-p₁}).

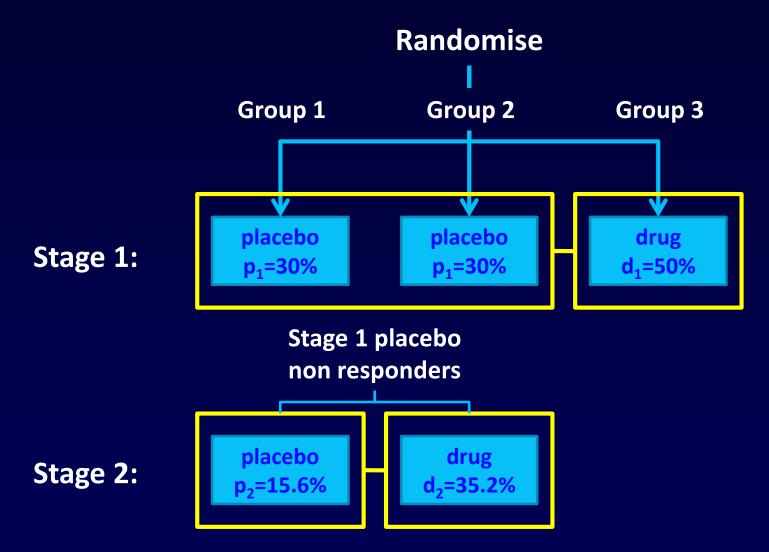
Within patient correlation is important and is hot is accounted for in the SPCD design

Sta resp	ge 1 onse	Correlation	Stage 1	onse in placebo ponders)
p1	d1	ρ	p2	d2
	50% 60%	0.00	50.0%	60.0%
		0.25	42.0%	52.2%
50%		0.50	33.3%	43.9%
		0.75	23.0%	34.1%
		1.00	0%	20.0%
30% 50%		0.00	30.0%	50.0%
		0.25	25.5%	45.0%
	50%	0.50	20.5%	39.8%
		0.75	14.2%	33.9%
		1.00	0%	28.6%



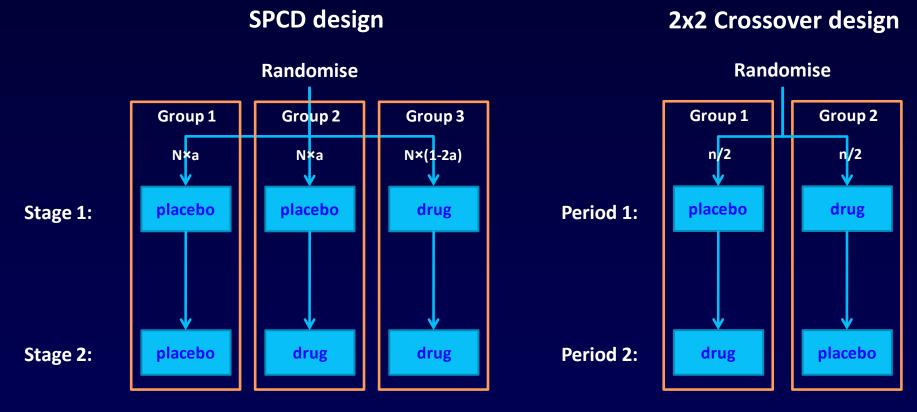
Example #2

- +3.3 unit change or greater required to achieve a 'response'
- Placebo has mean=+2 units, SD 2.5 units
 - 30% responders
- Drug has mean=+3.3 units, SD 2.5 units
 - 50% responders
- Within patient correlation=0.70

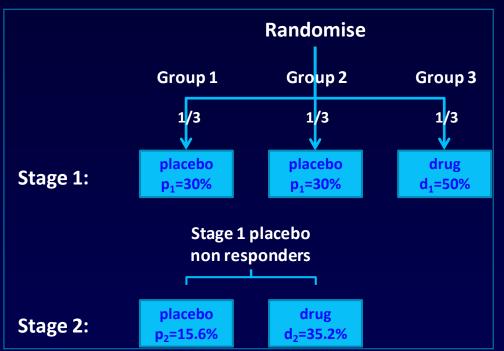


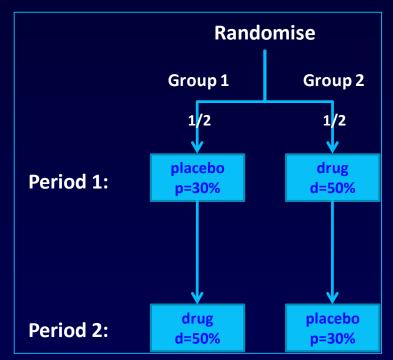
Difference in means of +1.3 delivers a +20%

Example #2 Design



P:P:D	w N	
	0.70	149
2.2.2	0.95	228
3:3:2	0.50	133
	0.30	251
	0.70	131
1:1:1	0.95	190
1:1:1	0.50	130
	0.30	172
	0.70	126
1:1:2	0.95	164
1:1:2	0.50	149
	0.30	220
	0.70	153
1:1:4	0.95	180
1.1.4	0.50	205
	0.30	210


2x2 Crossover: A Simple Alternative



Example #2 revisited

SPCD design

N=126 for 80% power N=168 for 90% power w=0.6 weighting to give lowest possible N 1:2 drug vs placebo randomisation 2x2 Crossover design

N=50 for 80% power N=67 for 90% power 80% power 1:1 drug vs placebo randomisation

2x2 Crossover Design

- Under the same assumptions of treatment effect and within patient correlation, 2x2 crossover is more powerful than the best performing SPCD design
- Example #2
 - Best SPCD design gives N=126 for 80% power compared to N=50 for a 2x2 crossover
 - 2x2 crossover with N=126 would have
 - 99.4% power for a difference of 20%
 - 80% power for differences as low as 12.5%

Summary (1 of 4)

- Two Stage Design
- Stage 1 patients randomised to drug:placebo in a ratio favouring placebo.
 - Authors tend to recommend 1:3 or 1:2
 - Treatment effect = $d_1 p_1$
- Stage 2 placebo non-responders from Stage 1 receive drug:placebo in a 1:1 ratio.
 - Treatment effect = $d_2 p_2$
- Overall comparison based on weighted average of treatment effects estimated in Stage 1 and in Stage 2
 - Overall Effect = w × $(d_1-p_1) + (1-w) \times (d_2-p_2)$

Summary (2 of 4)

- Overall the SPCD will be approx 2x along long as a conventional single stage 1:1 design
- Stage 1 placebo responders do not contribute in Stage 2
 - What happens to these patients and their data?
- Stage 1 patients who continue on drug in Stage 2 also do not contribute
 - What happens to these patients and their data?
- Does it make sense to combine the treatment effect in allcomers in Stage 1 with the treatment effect in nonresponders in Stage 2? How is the result to be interpreted?

Summary (3 of 4)

- What value for 'w'?
 - w = $\frac{1}{2}$ \Rightarrow equal weight to Stage 1 and Stage 2 effects?
 - w = $\frac{3}{4}$ \Rightarrow more weight to Stage 2 than Stage 1?
 - Inherently not a statisitical choice must be justified and rationalised clinically
- Choice of w has dramatic impact on the performance of the SPCD design
 - N can double and design become less favourable than a conventional single stage 1:1 design
- What choice for randomisation in Stage 1?
 - Design is based upon randomising more patients to placebo than drug in Stage 1, e.g. 1:2 or 1:3. Is this desirable?
 - Choice of randomisation ratio also has a large impact on the performance of the SPCD design

Summary (4 of 4)

- Critically, the SPCD design ignores the correlation present within a patient when given repeated tests
 - Many design illustrations are therefore infeasible.
- Response rate in Stage 2 is directly related to response rate in Stage 1 – cannot arbitrarily choose Stage 2 response rates when designing a SPCD trial.
 - Given drug and placebo response rates in Stage 1 and within patient correlation, Stage 2 response rates are fixed.
- Many of the purported examples of savings in N are therefore likely to be overestimated.
- Under the same assumptions of treatment effect and within patient correlation, a 2x2 crossover is more powerful than the best performing SPCD design

Key points (1)

- Efficiency of SPCD design depends crucially upon:
 - Stage 1 drug:placebo randomization ratio.
 - Relative weighting of Stage 1 vs Stage 2 data.
- Stage 1 randomisation ratios of 1:2 or 1:3 favouring placebo are encouraged and required for best performance of the design.
- Relative weighting of Stage 1 vs Stage 2 data has a dramatic effect on the performance of the SPCD design.
 - Choice of weighting requires clinical rather than statistical justification.

Key points (2)

- Plausibility of combining Stage 1 treatment effect in allcomers with Stage 2 treatment effect in placebo non-responders is debatable.
 - Are these patient populations the same?
 - Can the overall result be interpreted?
- Design ignores within patient correlation therefore examples of savings in N and gains in power are likely to be somehwat overestimated.
- Under the same assumptions of treatment effect and within patient correlation, a 2x2 crossover is more powerful than the best performing SPCD design.